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Recently it has been shown that there are three families of stochastic one-dimensional nonequilibrium lattice
models for which the single-shock measures form an invariant subspace of the states of these models. Here,
both the stationary states and dynamics of single-shocks on a one-dimensional lattice are studied. This is done
for both an infinite lattice and a finite lattice with boundaries. It is seen that these models possess both static
and dynamical phase transitions. The static phase transition is the well-known low-high density phase transi-
tion for the asymmetric simple exclusion process. The branching-coalescing random walk and asymmetric
Kawasaki-Glauber process models also show the same phase transition. Double-shocks on a one-dimensional
lattice are also investigated. It is shown that at the stationary state the contribution of double-shocks with
higher width becomes small, and the main contribution comes from thin double-shocks.
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I. INTRODUCTION

Reaction-diffusion systems is a well-studied area. People
have studied reaction-diffusion systems using analytical
techniques, approximation methods, and simulations. A large
fraction of exact results belong to low-dimensional �specially
one-dimensional� systems, where solving low-dimensional
systems should in principle be easier. Despite their simplic-
ity, these systems exhibit a rich and rather nontrivial dynami-
cal and stationary behavior. Studies on the models far from
equilibrium have shown that there is a remarkably rich vari-
ety of critical phenomena �1�.

Shocks in one-dimensional reaction-diffusion models
have received much interest recently �2–12�. There are some
exact results about shocks in one-dimensional reaction-
diffusion models together with simulations, numeric results
�7�, and also mean field results �3�. Formation of localized
shocks in one-dimensional driven diffusive systems with
spacially homogeneous creation and annihilation of particles
has been studied in �13�. Recently, in �5�, the families of
models with traveling wave solutions on a finite lattice have
been presented. These models are the asymmetric simple ex-
clusion process �ASEP�, the branching-coalescing random
walk �BCRW�, and the asymmetric Kawasaki-Glauber pro-
cess �AKGP�. In all of these cases the time evolution of the
shock measure is equivalent to that of a random walker on a
lattice with L sites with homogeneous hopping rates in the
bulk and special reflection rates at the boundary.

Shocks have been studied at both the macroscopic and the
microscopic levels and there are some efforts on addressing
the question of how these macroscopic shocks originate from
the microscopic dynamics �8�. Hydrodynamic limits are also
investigated.

Among the important aspects of reaction-diffusion sys-
tems is the phase structure of the system. The static phase
structure concerns the time-independent profiles of the sys-
tem, while the dynamical phase structure concerns the evo-
lution of the system, specially its relaxation behavior. In

�14–19�, the phase structure of some classes of single-or
multiple-species reaction-diffusion systems have been inves-
tigated. These investigations were based on the one-point
functions of the systems.

Here we study both stationary and also dynamics of the
single-shocks on a one-dimensional lattice. This is done for
both an infinite lattice and a finite lattice with boundaries. In
the stationary state, the system can be found in the low-
density or in the high-density phase. This phase transition is
a well-known first order phase transition in familiar ASEP,
and also its extensions �20�. The BCRW and AKGP models
show the same phase transitions. We also investigate the dy-
namical phase transitions of the models. It is seen that ASEP
has no dynamical phase transition, but both of the models
BCRW and AKGP have three phases, and the system may
show dynamical phase transitions. Double-shocks on a one-
dimensional lattice have been also investigated, and its sta-
tionary behavior has been studied. It is shown that, in the
thermodynamic limit, contribution of double-shocks with
higher width become vanishingly small.

II. FIXING THE NOTATIONS

Consider a one-dimensional lattice, each point of which is
either empty or contains one particle. Let the lattice have L
sites. An empty state is denoted by �0� and an occupied state
is denoted by �1�.

�0� ª �1

0
�, �1� ª �0

1
� . �1�

If the probability that the site i is occupied is �i then the state
of that is represented by

�1 − �i

�i
� .

The observables of a reaction-diffusion system are the opera-
tors Ni

�, where i with 1� i�L denotes the site number, and
�=0,1 denotes the hole or the particle: Ni

0 is the hole �va-
cancy� number operator at site i, and Ni

1 is the particle num-
ber operator at site i. One has obviously the constraint
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s�Ni
� = 1, �2�

where 	s� is a covector of the components of which �s�’s� are
all equal to one. The constraint �2� simply says that each site
is either occupied by one particle or empty. A representation
for these observables is

�3�

where N� is a diagonal 2�2 matrix the only nonzero ele-
ment of which is the �th diagonal element, and the operators
1 in the above expression are also 2�2 matrices. The state
of the system is characterized by a vector

�4�

where V is a two-dimensional vector space. All the elements
of the vector �P� are non-negative, and

	S�P� = 1. �5�

Here 	S� is the tensor-product of L covectors 	s�. The evolu-
tion of the state of the system is given by

�Ṗ� = H�P� , �6�

where the Hamiltonian H is stochastic, by which it is meant
that its nondiagonal elements are non-negative and

	S�H = 0. �7�

Two conventions are used to write the master equation,

�a� �Ṗ�=−H��P�Þ �P��t�=exp�−tH���P��0�
�b� �Ṗ�=H�P�Þ �P��t�=exp�tH��P��0�.
These two conventions are related to each other simply

through H�=−H. In the �a� convention nondiagonal ele-
ments of H� are negative of reaction rates, hence nonposi-
tive, and its diagonal elements are non-negative. In the �b�
convention nondiagonal elements of H are reaction rates,
hence non-negative, and its diagonal elements are nonposi-
tive. In the �a� convention the real parts of the eigenvalues of
H� are non-negative, and the eigenvalue with minimum non-
zero real part corresponds to the relaxation time. In the �b�
convention the real parts of the eigenvalues of H are non-
positive, and the eigenvalue with the maximum nonzero real
part corresponds to the relaxation time, and finally the state
vector �P� is the same in two conventions, and in both con-
ventions the elements of �P� are non-negative. Throughout
this paper we use the �b� convention.

The interaction is nearest neighbor if the Hamiltonian is
of the form

H = 

i=1

L−1

Hi,i+1, �8�

where

�9�

�It has been assumed that the sites of the system are identical,
that is, the system is translation-invariant. Otherwise H in the

right-hand side of Eq. �9� would depend on i.� The two-site
Hamiltonian H is stochastic, that is, its nondiagonal elements
are non-negative, and the sum of the elements of each of its
columns vanishes:

�	s� � 	s��H = 0. �10�

Here H is a 4�4 matrix �as the system under consideration
has two possible states in each site and the interactions are
nearest neighbor�. The nondiagonal elements of H are non-
negative and equal to the interaction rates; that is, the ele-
ment H�

� with ��� is equal to the rate of change of the state
� to the state �. � and � each represent the state of two
adjacent sites. For example, if �=01 and �=10, then H�

� is
the rate of particle diffusion to the right.

The evolution equation of one-point function 	ni� �k-point
functions� depends on both one- and two-point functions �k
−1-, k-, and k+1-point functions�. Generally this set of evo-
lution equations cannot be solved exactly. If one can obtain
the state of the system �P� exactly, there is no need to solve
this set of evolution equations. In �21�, a ten-parameter fam-
ily of reaction-diffusion processes was introduced for which
the evolution equation of k-point functions contains only k-or
less-point functions. We call such systems autonomous. The
average particle number in each site has been obtained ex-
actly for these models. In �22,23�, this has been generalized
to multispecies systems and more-than-two-site interactions.

Although generally one cannot obtain the state of the sys-
tem �P� exactly, for a special choice of initial states and of
course with some constraints on reaction rates, one may ob-
tain the state of the system �P�. There are three families of
stochastic one-dimensional nonequilibrium lattice models for
which the single-shock measures are an invariant subspace of
the states of these models �5�. If the initial state of these
models is a linear superposition of shock measures then one
can obtain the state of the system �P� exactly. These models
are the asymmetric simple exclusion process �ASEP�, the
branching-coalescing random walk �BCRW�, and the asym-
metric Kawasaki-Glauber process �AKGP�.

Let us consider a one-dimensional lattice with L sites. The
interaction is nearest neighbor if the Hamiltonian is of the
form

H = b1 � 1��L−1� + �

i=1

L−1

Hi,i+1� + 1��L−1�
� bL, �11�

where Hi,i+1 denotes interaction in the bulk and b1 and bL
denote the interactions at the boundaries,

b1 ª �− � �

� − �
�, bL ª �− � �

� − �
� . �12�

� and � �� and �� are the rates of injection and extraction at
the first site �at the Lth site�. Each site may be occupied or
vacant. We represent any configuration of the system by the
vector �Ea�. So the system is spanned by 2L vectors, �Ea�
�a=1,2 , . . . ,2L�, and any physical state is a linear combina-
tion of these vectors
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�P� = 

a=1

2L

Pa�Ea�, where 

a=1

2L

Pa = 1. �13�

Pa’s are non-negative real numbers. Pa is the probability of
finding the system in the configuration �a�.

It is said that the state of the system is a single-shock at
the site k if there is a jump in the density at the site k and the
state of the system is represented by a tensor product of the
states at each site as

�ek� = u�k
� v��L−k�, �14�

where

u ª �1 − �1

�1
�, v ª �1 − �2

�2
� . �15�

It is seen that

	S�ek� = 1. �16�

�ek� represents a state for which the occupation probability
for the first k sites is �1, and the occupation probability for
the next L−k sites is �2. The set �ek� ,k=0,1 , . . . ,L is not a
complete set, but linearly independent.

There are three families of stochastic one-dimensional
nonequilibrium lattice models, �ASEP, BCRW, AKGP�, for
which if the initial state of these models is a linear superpo-
sition of shock states, at the later times the state of the sys-
tem �P� remains a linear combination of shock state. For
these models

H�ek� = d1�ek−1� + d2�ek+1� − �d1 + d2�ek, �17�

where di’s are some parameters depending on the reaction
rates in the bulk, �1 and �2. So the span of �ek�’s is an invari-
ant subspace of H, the Hamiltonian of the above-mentioned
models. It should be noted that the number of �ek�’s are L
+1, and any physical state is not necessarily expressible in
terms of �ek�’s. For a finite lattice with the injection and
extraction at the boundaries besides Eq. �17�, there are two
other relations.

H�e0� = D1�e1� − D1�e0� ,

H�eL� = D2�eL−1� − D2�eL� , �18�

where Di’s are two parameters generally depending on �1
and �2, and the reaction rates.

Let us assume that the initial state of the system is a linear
combination of shock state

�P��0� = 

k=0

L

pk�0��ek� . �19�

pk’s are not necessarily non-negative, and so any of them
may be greater than one. For such an initial state, the system
remains in the subspace spanned by shock measures.

�P��t� = 

k=0

L

pk�t��ek� . �20�

Using Eq. �16�, it is seen that



k=0

L

pk�t� = 1. �21�

But it should be noted that these are not probabilities. pk only
expresses the contribution of a shock at the site k in the state
of the system. Any shock state �ek� can be expanded in terms
of �Ea�,

�ek� = 

a=1

2L

	ka�Ea� , �22�

where the elements of � are non-negative. Substituting Eq.
�22� into Eq. �20� and comparing with Eq. �13� gives

Pa = 

k=1

L

pk	ka. �23�

Here Pa is the probability to find the system in the state �Ea�,
and so it is a non-negative number. The condition of non-
negativeness of probabilities �Pa’s� leads to constraints on
pk, see Eq. �23�.

The three models are classified as follows.
�1� ASEP. The only nonvanishing rates in the bulk are the

rates of diffusion to the right 
23 and diffusion to the left 
32.
For a finite lattice, there may be injection and extraction rates
at the boundaries. � and � are the injection and extraction
rates at the left boundary, and � and � the injection and
extraction rates at the right boundary. In this case the densi-
ties can take any value between 0 and 1 ��1�0,1 and �2
�0,1�. d1 and d2 are

d1 =
�1�1 − �1�

�2 − �1
�
23 − 
32� ,

d2 =
�2�1 − �2�

�2 − �1
�
23 − 
32� . �24�

It should be noted that the densities �1 and �2 are also related
through

�2�1 − �1�
�1�1 − �2�

=

23


32
. �25�

So

d1 =
�1

�2

23, d2 =

�2

�1

32. �26�

The rates of injection and extraction at the boundaries are
also related to the densities �1 and �2.

�1�1 − �1��
23 − 
32� = ��1 − �1� − ��1,

− �2�1 − �2��
23 − 
32� = ��1 − �2� − ��2. �27�

The parameters D1 and D2 are obtained to be

D1 = d2 +
��1 − �2� − ��2

�1 − �2
= d2 +

�

�1
− 
23,

D2 = d1 −
��1 − �1� − ��1

�1 − �2
= d1 +

�

�2
− 
32. �28�
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�2� BCRW. The nonvanishing rates are coalescence �
34
and 
24�, Branching �
42 and 
43�, and diffusion to the left
and right �
32 and 
23�. The injection rate at the right bound-
ary � should be zero. The density �1 can take any value
between 0 and 1, but �2 should be zero. These parameters are
related through


23


43
=

1 − �1

�1
,


23


43
=


24 + 
34


42 + ga43
. �29�

The rates of injection and extraction at the boundaries are
also related to the densities �1, and the reaction rates,

�1
23 − �1�1 − �1�
32 − �1
2
34 = ��1 − �1� − ��1. �30�

The parameters d1 and d2 are

d1 = �1 − �1�
32 + �1
34,

d2 =

43

�1
. �31�

The parameters D1 and D2 are obtained to be

D1 =
�

�1
,

D2 = d1 − d2�1 − �1� + � . �32�

�3� AKGP. The nonvanishing rates are Death �
12 and

13� and Branching to the left and right �
42 and 
43�, and
also diffusion to the left. �1 should be equal to one, and �2
should be zero. The extraction rate at the left boundary � and
the injection rate at the right boundary � should be zero. The
hoping parameters are d1=
13, d2=
43, and finally D1=�,
and D2=�.

Interchanging �1 and �2 is nothing but exchanging left and
right. Changing �i to 1−�i is particle hole exchange.

III. SINGLE-SHOCK

A. Shock on an infinite lattice

Here, we want to consider the evolution of shock mea-
sures on an infinite lattice. Here �el� stands for a state with a
shock at the site l. If the initial state is a linear combination
of shock measures, at later times the state of the system
should be also expressible in terms of shock measures.

�P��t� = 

k=−�

�

pk�t��ek� . �33�

Calculating pk, one can obtain any correlation function of
number operators.

	ni� = 	S�ni�P� = 

k=−�

�

pk�t�	S�ni�ek� , �34�

where

	S�ni�ek� = 
�1, i � k

�2, i � k .
� �35�

So

	ni� = �2 + ��1 − �2�Bi�t� �36�

where

Bi�t� = 

k=i

�

pk�t� . �37�

All other correlation functions of number operators can be
obtained in terms of Bi’s.

	ni� = �2 + ��1 − �2�Bi�t� ,

	ninj� = �2
2 + ��1 − �2���2Bi�t� + �1B j�t�� ,

	ninjnk� = �2
3 + ��1 − �2���2

2Bi�t� + �2�1B j�t� + �1
2Bk�t��

] �38�

where i
 j
k
¯.
The evolution equation for the system is

H�P� =
d

dt
�P� . �39�

Knowing the action of H on �ek�, one can obtain the evolu-
tion equation for pk�t�.

ṗk = d1pk+1 + d2pk−1 − �d1 + d2�pk. �40�

Here we have used the linear independence of �ek�’s. Let us
define the generating function

G�z,t� ª 

l=−�

�

Pl�t�zl. �41�

Then the evolution equation for G�z , t� is

Ġ = �d1z−1 + d2z − �d1 + d2��G , �42�

the solution for which is

G�z,t� = e�d1z−1+d2z−�d1+d2��tG�z,0� . �43�

G�z ,0� can be determined using Eq. �41� and contributions
of the shock measures in the initial state. The coefficients for
the Laurent expansion of the generating function are pk�t�’s:

pk�t� = e−�d1+d2�t 

m=−�

� �d2

d1
��k−m�/2

Ik−m�2�d1d2t�pm�0� .

�44�

The above result is first obtained in �4�. At large times,

pk�t� � �d2

d1
�k/2e�−�d1+d2�+2�d1d2�t

�t
. �45�

It is seen from the above equation that if d2
d1, the contri-
bution of the shocks at the rightmost sites tend rapidly to
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their final value, and obviously for d2�d1 the contribution of
the shocks at the leftmost sites arrive earlier to their final
values. This expression seems to be unbounded for k→ ±�.
For any fixed t, this is true. However, it simply means that in
order for this term to represent the leading term for some k,
t must be greater than some T, which does depend on k.

B. Shocks on a lattice with the boundary

Now let us first consider a one-dimensional lattice with L
sites. There are injection and extraction at the boundaries.
Because the boundary terms �17� change to

H�ek� = d1�ek−1� + d2�ek+1� − �d1 + d2��ek� ,

H�e0� = D1�e1� − D1�e0� ,

H�eL� = D2�eL−1� − D2�eL� , �46�

the evolution equation for pk’s in the bulk are the same as
that of infinite lattice, but here one should take care of
boundary terms.

ṗk = d1pk+1 + d2pk−1 − �d1 + d2�pk, k � 0,1,L − 1,L ,

ṗL−1 = D2pL + d2pL−2 − �d1 + d2�pL−1,

ṗ1 = d1p2 + D1p0 − �d1 + d2�p1,

ṗL = d2pL−1 − D2pL,

ṗ0 = d1p1 − D1p0. �47�

Let us first consider the stationary case. This set of equations
can be solved easily,

pk = �d2

d1
�k−1� d1

D2
��k,L� d2

D1
��k,0

p1. �48�

For any finite L, all the pk’s can be obtained in terms of p1,
and p1 is also obtained using the normalization condition
�21�. In the thermodynamic limit �L→��, it is seen that for
d2�d1, finiteness of pk for large k leads to vanishingly small
p1. But as d1 exceeds d2, pk for large k becomes vanishingly
small in the thermodynamic limit. This is the static phase
transition previously mentioned. The static phase transition is
controlled by the reaction rates in the bulk and is indepen-
dent of the rates at the boundaries. It is a discontinuous
change of the behavior of the derivative of the stationary
value of pk at the end points, with respect to the reaction
rates. This phase transition is a well-known first order phase
transition for the familiar ASEP, and also its extensions �20�.
The BCRW and AKGP models show the same phase transi-
tions. In the stationary state, the system can be found in the
low-density or in the high-density phase, or in other words
the contribution of the leftmost or rightmost shocks may be
negligible.

Now, return to the dynamics of the system. To proceed let
us first introduce a change of variable

qk ª pk, k � 0,L ,

q0 ª �D1/d2�p0,

qL ª �D2/d1�pL. �49�

Using this change of variable Eq. �47� recasts to

q̇k = d1qk+1 + d2qk−1 − �d1 + d2�qk, k � 0,L

q̇L =
d2D2

d1
qL−1 − D2qL,

q̇0 =
d1D1

d2
q1 − D1q0. �50�

To find the relaxation of the system towards its stationary
state, one should find the greatest nonzero eigenvalue of the
operator h, defined through q̇k¬hk

l ql. The eigenvalues and
eigenvectors of h have been denoted by E and CE, respec-
tively. Expanding the vector q in terms of CE’s, and regard-
ing the completeness and linear independency of CE’s, one
arrives at

ECk = d1Ck+1 + d2Ck−1 − �d1 + d2�Ck, k � 0,L ,

ECL =
d2D2

d1
CL−1 − D2CL,

EC0 =
d1D1

d2
C1 − D1C0. �51�

The solution to the above equations is

Ck = az1
k + bz2

k , �52�

where zi’s satisfy

E = − �d1 + d2� + d1zi +
d2

zi
. �53�

Then z1z2=d2 /d1. The second and third equations of Eq. �51�
take the form

�E + D2��az1
L + bz2

L� −
d2D2

d1
�az1

L−1 + bz2
L−1� = 0,

�E + D1��a + b� −
d1D1

d2
�az1 + bz2� = 0. �54�

or

��E + D2�z1 −
d2D2

d1
�a + ��E + D2�z2 −

d2D2

d1
�� z2

z1
�L−1

b = 0,

�E + D1 −
d1D1

d2
z1�a + �E + D1 −

d1D1

d2
z2�b = 0. �55�

To have nonzero solutions for qk’s, these equations should
have nontrivial solutions for a and b, which means that the
determinant of the coefficients should be zero,

PHASE TRANSITIONS IN SYSTEMS POSSESSING¼ PHYSICAL REVIEW E 74, 011107 �2006�

011107-5



�E + D1 −
d1D1

d2
z1���E + D2�z2 −

d2D2

d1
�� z2

z1
�L−1

= �E + D1 −
d1D1

d2
z2���E + D2�z1 −

d2D2

d1
� . �56�

Performing the change of variable zi¬
�d2 /d1xi leads to

E = − �d1 + d2� + �d1d2�xi + xi
−1� �57�

and x1x2=1. Equation �56� changes to

�E + D1 − D1x1
�d1/d2���E + D2� − D2x1

�d2/d1�x1
−2L+2

= ��E + D1�x1 − D1
�d1/d2���E + D2�x1 − D2

�d2/d1� .

�58�

Equation �58� can be written as a polynomial equation of
order 2L, so it has 2L solutions. Two obvious solutions of
Eq. �58� are x= ±1. But, these generally do not correspond to
eigenvalues and eigenvectors. In fact for these solutions, x1
and x2 are the same, so that Eq. �52� should be modified to
Ck= �a+bk��−1�k and it is not difficult to see that these do
not fulfill the boundary conditions unless a=b=0. It will be
shown that two cases may occur, either both solutions are
phases then �x1�= �x2�=1, or both of them are real. Except for
the solutions ±1, one of the real solutions is greater than one,
which we take to be x1. For the phase solution, x=exp�i��

E = − �d1 + d2� + 2�d1d2 cos � . �59�

Among these sets of eigenvalues the biggest one is E
=−��d1−�d2�2. So if there is no other solution except for the
phase solutions, the relaxation time is

�0 =
1

��d1 − �d2�2
. �60�

Now, let us search for the real solutions, if those exist. Of
course, by real solutions it is meant real solutions besides the
trivial solutions ±1. If x is a solution to Eq. �58�, x−1 is
another solution to it. So it is sufficient to seek the solutions
with �x��1. In the thermodynamic limit, and for �x��1, Eq.
�58� is simplified to

��E + D2�x − D2
�d2/d1���E + D1�x − D1

�d1/d2� = 0.

�61�

If such a solution exists, then

E = − �d1 + d2� + �d1d2�x + x−1� �62�

for any positive x, E obtained from Eq. �62� is greater than
the eigenvalue obtained from Eq. �59�, and so the system
relaxes to its stationary state slower. If all of the solutions for
Eq. �58� are phases we call the system in the fast phase, and
if there is a real solution, the system is in the slow phase.
Depending on parameters, there may be more than one real
solution, and the system may be in the slow or slower phase.
The solution of the first bracket in Eq. �61� is x=�d2 /d1, and
�d1−D2� /�d1d2. The first solution gives E=0, which is re-
lated to the stationary state. We obtained these solutions as-

suming �x��1. So, x= �d1−D2� /�d1d2 is a solution provided
that

A ª

d1 − D2

�d1d2

� 1. �63�

Similarly there may be a solution for the second bracket in
Eq. �61�, x= �d2−D1� /�d1d2, provided that

B ª

d2 − D1

�d1d2

� 1. �64�

The above results are summarized in Fig. 1. Depending on
the magnitudes of A,B, there are five regions. If both A,B
are less than one, then the relaxation time is given by Eq.
�60� �region I�. Changing continuously the reaction rates at
the bulk or at the boundaries or the densities, the relaxation
time may change discontinuously. This is the dynamical
phase transition. If one of A and B become greater than one,
then the relaxation time is given by �A or �B

�A ª

d1 − D2

D2�d1 − D2 − d2�
,

�B ª
d2 − D1

D1�d2 − D1 − d1�
. �65�

If A
1 and B�1 the system is in the phase II. If A�1 and
B
1 the system is in the phase III. And finally if it is pos-
sible that both A and B become greater than one, the relax-
ation time will be given by max��A ,�B�. In the phase IV, the
relaxation time is �B, and in the phase V, the relaxation time
is �A.

Let us study each of the three models ASEP, BCRW, and
AKGP separately.

�1� ASEP. To study the phase structure of this model, we
should obtain A and B. Let us assume 
32

23. Then 
32

�
23
32, and obviously


32 −
�

�2

 �
23
32.

Now using the second equation of Eq. �28�, one arrives at

FIG. 1. -Exact phase diagram of the ASEP, BCRW, and AKGP,
in the A, B plane. For the ASEP, the parameter space is restricted to
the region I. For the models BCRW and AKGP, the parameter space
is restricted to the regions I, II, and III.
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d1 − D2 
 �
23
32 = �d1d2 Þ A 
 1.

Now, let us assume 
23

32. Using Eq. �27� and the fact
that � is the extraction rate and should be positive, one gets


32 −
�

�2

 
23.

But 
23
�
23
32, so

d1 − D2 
 �
23
32 = �d1d2 Þ A 
 1.

With similar reasoning, one gets B
1. Therefore the only
region in the space of parameters A and B available for the
ASEP is the region I. So, there is no dynamical phase tran-
sition for ASEP, and the relaxation time is given by

� =
�1�2

��1
�
23 − �2

�
32�2
. �66�

�2� BCRW. Let us first define

� ª 
32 +
�1

1 − �1

34. �67�

Using Eq. �30�, and the fact that � is the extraction rate, and
should be positive, one gets

��1 − �1�
�1

� 
23 − �1 − �1�� . �68�

Three cases may occur.
�i� 
23
� and ��1−�1� /�1

23− �1−�1��
23�. Then

A
1 and B�1. Therefore the system is in the phase II, and
the relaxation time is given by �B.

�ii� 
23�� and �

23− �1−�1��. Then A�1 and B

1. Therefore the system is in the phase III, and the relax-
ation time is given by �A.

�iii� Otherwise the system is in the phase I, and the relax-
ation time is given by �0, Eq. �60�.
The regions with A�1 and B�1 are not available for the
BCRW. In summary, for the model BCRW, the parameter
space is restricted to the regions I, II, and III. So, there are
three distinct phases available for the system, and this model
may experience dynamical phase transitions.

�3� AKGP. For this model we have

A ª�
13


43
−

�


13
43
,

B ª�
43


13
−

�


13
43
. �69�

If 
13�
43, then B
1. Depending on the rates 
13 and 
43,
and �, the system may be in phases I or III. And if 
13


43, then A
1. Depending on the rates 
13 and 
43, and
�, the system may be in phases I or II. For the model AKGP,
the parameter space is restricted to the regions I, II, and III.
So, there are three distinct phases available for the system,
and the model AKGP may experience dynamical phase tran-
sitions.

IV. DOUBLE-SHOCK

We define the state of a double shock on a one-
dimensional lattice with L sites as

�em,k� = u�m
� v�k

� w��L−k−m�, m + k � L , �70�

where

u ª �1 − �1

�1
�, v ª �1 − �2

�2
�, w ª �1 − �3

�3
� . �71�

�em,k� represents a state for which the occupation probability
for the first m sites is �1, the occupation probability for the
next k sites is �2, and the occupation probability for remain-
ing sites is �3. It should be noted that this state represents a
double shock, one shock at the site m, and the other one at
the site m+k. We call k the width of double-shock. We also
assume that the three densities �1, �2, and �3 are different.
The evolution of the shocks in ASEP starting from a measure
with several shocks and extra particles at the shock positions
is studied in �4�. In that model, the measure is

�em,k� = u�m
� Z � v�k

� Z � w��L−k−m�, m + k � L ,

�72�

where

Z ª �0

1
� . �73�

It is shown that with a special choice of densities, the time
evolution equation of this model is similar to that of some
random walkers on a lattice.

Although the states �em,k�, �m ,k=0,1 , . . . � do not con-
struct a complete basis, they are linearly independent pro-
vided that k the width of double-shock can be zero only
when m=0 or m=L. This means that there should be at least
one site with the occupation probability �2 between the sites
with the occupation probability �1, and the sites with the
occupation probability �3. For the single-shock linear inde-
pendency of �ek�’s are obvious, but here u, v, and w are not
linearly independent, So it is not obvious that �em,k�’s are
linearly independent. To prove �em,k�’s are linearly indepen-
dent, one must show that if



k=0

L



m=0

L−k

amk�em,k� = 0, �74�

then all amk’s must be zero. Let us define

ũ ª ��1 �1 − 1�, ṽ ª ��2 �2 − 1�, w̃ ª ��3 �3 − 1� .

�75�

Multiplying Eq. �74� from the left hand side by 	s��L, one
arrives at



k=0

L

�

m=0

L−k

amk = 0. �76�

The prime on the first summation denotes that k=0, only
when m=0, or m=L. Now, multiplying Eq. �74� from the
left-hand side by 	s��L−1ũ and w̃ � 	s��L−1 one arrives at
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k=0

L



m=0

L−k

amk − aL0 = 0,



k=0

L



m=0

L−k

amk − a00 = 0. �77�

Eq. �76� together with Eq. �77� gives aL0=a00=0. Now, de-
fine fr,n through

frn
ª ṽ�r

� s�n
� ṽ��L−r−n�, �78�

where r and n are non-negative numbers and n+r�L. Mul-
tiplying Eq. �74� from the left-hand side by fr,1 and using
fr,1�em,k�=�m

r �k
1 �for k�0�, one arrives at ar1=0. Similarly, it

can be shown that all the coefficients amk in Eq. �74� should
be zero. So, the set �em,k�’s are linearly independent.

It was previously mentioned that there are three families
of stochastic one-dimensional nonequilibrium lattice models
�ASEP, BCRW, AKGP� for which if the initial state is a
linear superposition of single-shock measures, at later times
the state of the system �P� remains a linear combination of
shock measures. Among these, ASEP is the only model for
which double-shocks form an invariant subspace, which
means that if the initial state is a linear superposition of the
double-shock measures, at later times the state of the system
�P� remains a linear combination of double-shocks. It can be
shown that for the case of ASEP and on a one-dimensional
lattice with infinite sites,

H�em,k� = d1�em−1,k+1� + d2�em+1,k−1� + d3�em,k−1� + d4�em,k+1�

− �d1 + d2 + d3 + d4��em,k�, k � 2,

H�em,1� = d1�em−1,2� + d4�em,2� − �d1 + d4��em,1� , �79�

where


23


32
=

�2�1 − �1�
�1�1 − �2�

=
�3�1 − �2�
�2�1 − �3�

, �80�

and

d1 = �
23 − 
32�
�1�1 − �1�

�2 − �1
,

d2 = �
23 − 
32�
�2�1 − �2�

�2 − �1
,

d3 = �
23 − 
32�
�2�1 − �2�

�3 − �2
,

d4 = �
23 − 
32�
�3�1 − �3�

�3 − �2
. �81�

If the initial state is a linear combination of double-
shocks, then

�P��t� = 

m=−�

�



k=1

�

pmk�t��emk� , �82�

where pm,k is the contribution of the double-shock, and mk in
the state of the system. Using Eqs. �6� and �82�, and also the
linear independency of �em,k�’s, one can obtain the evolution
equation for pmk’s.

ṗm,k = d1pm+1,k−1 + d2pm−1,k+1 + d3pm,k+1 + d4pm,k−1

− �d1 + d2 + d3 + d4�pm,k, k � 2,

ṗm,1 = d2pm−1,2 + d3pm,2 − �d1 + d4�pm,1. �83�

Let us define

qk ª 

m=−�

�

pmk. �84�

Then qk is the contribution of all double-shocks with the
width, the distance between two shocks, k in the state of the
system. Conservation of the probability, Eq. �5�, leads to



k=1

�

qk = 1. �85�

The evolution equations for qk’s are

q̇k = D1qk−1 + D2qk+1 − �D1 + D2�qk, k � 2,

q̇1 = D2q2 − D1q1, �86�

where

D1 ª d1 + d4, D2 ª d2 + d3. �87�

D1 and D2 can be written in terms of �1 and �2 and the
diffusion rates.

D1 = �
32 − 
23�
�1�1 − �1�
�1 − �2

+
�3�1 − �3�

�2 − �3
� ,

D2 = �
32 − 
23�
�2�1 − �2�
�1 − �2

+
�2�1 − �2�

�2 − �3
� . �88�

Subtracting these

D2 − D1 =
�2�1 − �2��1 + F��1 − F�2


23��1 − �2� + F�2��F�1 − �2� + �2�
, �89�

where Fª
32/
23, it is seen that D1
D2. One can easily
obtain the steady state solution for qk’s.

qk = �D1

D2
�k−1

q1,

q1 = 1 −
D1

D2
. �90�

To obtain the second equation of Eq. �90�, we have used Eq.
�85�. Using the fact that D1
D2, it is seen that qk goes to
zero for large k’s. This means that at the stationary state the
contributions of the double-shocks with larger width are less
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and the main contribution comes from thin double-shocks.
This is reminiscent of double-shocks in Burgers equation. In
fact, in the hydrodynamic limit double-shock is not stable
and converges to single-shock. Here, we show that in the
microscopic level, and in the thermodynamic limit, the sta-
tionary value of the contribution of double-shocks with
larger width becomes vanishingly small.
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